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A B S T R A C T

Theoretical prediction of effective properties for multiphase material systems is very important not only to

analysis and optimization of material performance, but also to new material designs. This review first

examines the issues, difficulties and challenges in prediction of material behaviors by summarizing and

critiquing the existing major analytical approaches dealing with material property modeling. The focus then

shifts to some recent advances in numerical methodology that are able to predict more accurately and

efficiently the effective physical properties of multiphase materials with complex internal microstructures.

A random generation-growth algorithm is highlighted for reproducing multiphase microstructures,

statistically equivalent to the actual systems, based on the geometrical and morphological information

obtained from measurements and experimental estimations. Then a high-efficiency lattice Boltzmann

solver for the corresponding governing equations is described which, while assuring energy conservation

and the appropriate continuities at numerous interfaces in a complex system, has demonstrated its

numerical power in yielding accurate solutions. Various applications are provided to validate the feasibility,

effectiveness and robustness of this new methodology by comparing the predictions with existing

experimental data from different transport processes, accounting for the effects due to component size,

material anisotropy, internal morphology and multiphase interactions. The examples given also suggest

even wider potential applicability of this methodology to other problems as long as they are governed by the

similar partial differential equation(s). Thus, for given system composition and structure, this numerical

methodology is in essence a model built on sound physics principles with prior validity, without resorting to

ad hoc empirical treatment. Therefore, it is useful for design and optimization of new materials, beyond just

predicting and analyzing the existing ones.
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1. Introduction

1.1. A preview of complex materials

In the human endeavor in exploring new materials, a constant
impetus is searching for better performance and new functionality.
Translating this into fundamental scientific issue is to explore the
connections between the raw ingredients, processing and the
ultimate properties – transport, mechanical and other physical
properties – of the resultant goods, instead of using the trial–error
approach so that a better product can be designed before into the
actual processing [1–9].

For an ideal rigid body such as those dealt with in elementary
material mechanics, the material is considered as homogeneous
with uniform and regular internal structure, largely resembling to
the metallic materials dominant in early industrialization time.
There consequently exists little difference between the properties
of the material and its components—a gold brick shares virtually
the same physical and chemical traits as a gold crystal. In the
engineering world however, there are hardly such ideal materials.
Even a gold brick has contaminations and defects in it and thus not
100% pure, and should hence be considered a mixture of the gold
crystals, the contaminants (additional components), and the
pores due to the defects in the molecular arrangement or the
internal morphology. In other words, for a rigorous analysis of
their properties, such materials have to be treated as composite
systems, and the issues or influences of the structural or
morphological factors have to be addressed [10]. For many
engineering materials where such impurities are commonplace, it
has been known long time ago that there is a rather weak
correlation between the properties of the ingredients and those of
the resulting products, as revealed by the pioneer works of Griffith
[11] on material strength, and independently of Peirce [12] on the
weakest link theorem. That is, constituents with improved quality
cannot assure a better product, and the internal structure—the
way the constituents are arranged in the material system is just as,
if not more, important. On the other hand, the inclusion of
different components into a material can be beneficial, acting as
reinforcement or supplements to improve the performance of the

material—alloys and fiber reinforced composite are just such
examples.

Nevertheless, analysis and prediction of behaviors of compo-
sites are in general much more intricate. Once mixed together, the
components of different types will more or less interact with each
other and the properties at the interfacial region will exhibit a
transition from one component to the other [13–16]. Such effects
usually turn even more complicated when the components are at
different phase states, such as in a semi-frozen soil system [17].
The multi-component, multiphase materials are increasingly used
in various fields, but analysis and investigation efforts are severely
lagging behind [18,19].

1.2. Examples of complex materials and structures

The challenges in studying complex multiphase materials come
mainly from the inherent variety and randomness of their internal
microstructures, and the coupling between the components of
different phases. Fig. 1 shows three typical such material
structures having extensive and important applications. Fig. 1a
shows a cross-section of an open-cell foam material [20–25]. It has
a netlike porous structure that leads, for metal-foam materials, to
the interesting combination of high porosity and low density yet
very high thermal and electric conductivities. Such foam materials,
typically two-phase systems of solid and void, have played critical
roles in advanced aircraft designs, for instance, to improve the
catalytic surfaces and enhance the heat exchanger systems. The
next type is a fibrous structure as shown in Fig. 1b of another solid–
void mixture with the solid in a slender and oriented form, usually
existing in polymeric and biomaterials [26]. For a long time, the
porous transport layer (PTL) in PEM fuel cell has been thought to
possess a granular porous structure; however very recent
investigations have demonstrated that the PTL actually possesses
a fibrous structure which exhibits quite different transport
behaviors from those with granular structures [27,28]. Another
example of fibrous materials is the advanced fiber reinforced
composites where fibers are utilized to enhance the mechanical
and thermal properties of the composites up to surprisingly high
levels [29–34]. The functionally graded materials (FGM) are

M. Wang, N. Pan / Materials Science and Engineering R 63 (2008) 1–302
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another class of novel materials with spatially varied micro-
structures of constituent phases and gradual variation of effective
properties tailored for specific performance requirements [35–38].
Fig. 1c shows the SEM micrograph of the cross-section of the Al2O3/
Y-TZP graded material. In each layer the granular alumina is
dispersed in the yttria tetragonal zirconia polycrystalline (Y-TZP).
Such functionally graded materials have recently gained more
attention owing to their unique and tailorable properties that are
suited to special applications, for instance as advanced heat-
shielding materials in aerospace and electronics industries [39–
41]. FGMs have also been used in actuator devices where the

materials behave better than the bimorph actuators in thermal
resistance, peeling resistance and reliability owing to the absence
of bonding agents [42,43]. Another application of FGMs is as a
heat–electricity conversion material for design of energy conver-
sion systems, raising the energy conversion efficiency of a nuclear
or solar device by above 40% [44,45].

For systems with three or more components/phases, the
microstructures or the phase distribution can become much more
complicated. Even in a two-component alloy, if there are lacunae or
small fractures inside, they should be treated as three-phase
materials for analysis purposes [46,47]. Another often-encoun-
tered multiphase structure is that of unsaturated porous soils [48–
54]; Fig. 2 illustrates two kinds of liquid phase distributions inside
an unsaturated granular porous media. The gray areas represent
the solid aggregates, the dark is the gas phase, and the white is the
liquid phase. The interesting and complex behavior comes largely
from the interactions among the different phases. Hydrophilic or
hydrophobic solid surfaces will lead to, respectively, liquid films
(a) or liquid droplets (b) on the solid phases. Since the thermal or
electric transport properties of the liquid are drastically different
from those of the gas phase, the liquid distribution will influence
considerably the overall effective transport properties of the
porous medium. Such problems are very critical for material
optimization and design. Whereas the phase interaction effects on
the material properties have not been systematically studied.

In the current wave of emerging new materials including
biomaterials [55–59], multifunctional materials [60–65], nano-
materials [66–72] and energy materials [73–77], most of them are
complex media in terms of both physics and structures, thus
increasing the urgency for more robust theoretical and computa-
tional tools.

1.3. Effective properties of complex materials

Given the complexities of the composite systems, the concept of
effective properties has become widely accepted [18,19,78–91].
Complex materials are multi-component and/or multiphase (state)
systems. As such, the behaviors of the material are dictated by each
and every component of different phases, that is, its overall
macroscopic property is not equal to that of any single constituent,
rather is a collective one contributed by all components forming
the system. Therefore, the effective property is actually the
equivalent property of a hypothetical simple material (homo-
geneous with single component and phase) which yields the same
response as that of the complex one at the same given conditions
and excitations [18,78–80].

Note that, however, this mapping between the complex
material system and its equivalent simple material is not unique.
The different components and phases in the complex system will
exhibit diverse and varying behaviors under different ambient
conditions and external excitations [18,79,92,93]. The system
overall properties are thus the functions of these external factors as
well, thus leading to different equivalent simple systems
[18,78,79,92].

Research and investigation of the effective properties of
complex materials are important because not only the multiphase
materials have so many significant applications, but it can also
shed new light on, and drive further developments, of the related
mathematical, physical and engineering theories [92–103].

1.4. Scope, objectives and structure of this review

This review will summarize the existing achievements in
prediction methods for the effective physical properties of
complex multiphase materials. Such methods include both

Fig. 1. Three porous structures. (a) A porous open-cell foam. (b) Fibrous layer in PEM

fuel cells. (c) A typical cross-section of a graded material.
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theoretical and the numerical ones, and the multiphase materials
can have very complex microstructures and phase distributions,
including various morphologies and geometries. The ‘‘effective
physical properties’’ here are associated with three implications:
(i) they are steady-state (equilibrium) macroscopic properties.
Even though in some cases where nanoscale inclusions play an
important role, such as in nanocomposites [85,87,104–109], only
the contributions of the nanoscale inclusions to the macroscopic
properties are concerned by using the corresponding effective

properties of the inclusions. So the continuum theories are still
valid for the whole system; (ii) The properties concerned are
limited to pure physical properties only, and no chemical reactions
are taken into account; (iii) The multiphase systems are in stable
and equilibrium state with no phase change, and only very small or
negligible deformations or convections, when appropriate, are
allowed.

Thus, the overall objectives for this review are (1) to examine
the existing models and methodologies to highlight the recent
significant progresses, and to discuss the promising directions; (2)
through further analysis, to bridge the microstructures and the
effective physical properties for complex multiphase materials; (3)
using examples to explore the inter-analogies between various
properties governed by PDEs in similar form so that one can adopt
the established methodologies to other untilled or unfledged
questions; and (4) when possible, to connect the theoretical results
with engineering applications. Through analytical predictions and
numerical modeling, certain optimization approaches and design
schemes for novel materials could be resulted for engineering
applications, and in turn the new observations and experiences
from the practice would accelerate the development of new
theories and methodologies.

This review is organized as follows. The theoretical models for
both two- and multiphase materials are summarized in Section 2.
The significant and major models are highlighted, while the
remaining limitations and challenges are detailed and analyzed.
Section 3 reviews some recent progresses in numerical modeling of
effective properties for multiphase media in two aspects: micro-
structure reproduction and numerical solution of the governing
equations, with emphasis on a new mesoscopic scheme. After the
numerical methods are validated by the existing experimental data
of different properties in various cases, the influences of several
aspects of the microstructure on the effective properties are
analyzed and discussed in Section 4. Finally conclusions and
potential future directions are presented in Section 5.

2. Theoretical models

A substantial number of theoretical (or analytical) models for
effective physical properties have been proposed in the past of
more than one hundred years [110]. Some of them have been
intended for highly specific applications, while others have wider
applicability. Nonetheless, most of them focus on the compositions
and barely dealt with the internal geometry or microstructures
beyond very simple geometrical arrangements, in spite of the
critical importance of those factors on the effective properties of a
complex material.

Apparently, theoretical approaches are still preferred owing to
their predictive or estimative power, low cost of easy use, and
reasonable accuracy for certain specific cases, especially when the
microstructure can be simplified.

2.1. Existing models

This section reviews the existing analytical models for effective
physical properties of heterogeneous materials, including thermal
conductivity, coefficient of thermal expansion, electric conductiv-
ity, dielectric constant (permittivity) and mechanical modulus.
Although these are quite different physical properties, they share
similar characteristics and general expressions of governing laws.

2.1.1. Two-phase models

For two-phase cases, the theoretical approaches include the basic

models, combined models, network models and theoretical bounds.

2.1.1.1. The basic models. Most if not all of the existing analytical
models for the effective physical properties in the literature are
based on, or derived from, several basic models. Here we list six
representative ones in Table 1, each of which has lead to a model
family and played very important roles in analyzing material
properties. Of them, the Parallel and Series model are the simplest
for two-phase systems and are often used as benchmarks for new
model validations. They often offer upper and lower bounds for
many properties of two-phase heterogonous materials, as proven
by Wiener for effective conductivity [111,112]. In the case of elastic
modulus, they are often called the Voigt and the Reuss models,
respectively [113,114]. The Parallel model also serves as the first-
order approximation to the calculation of the coefficient of thermal
expansion [115]. Next, the Effective Medium Theory (EMT) model
tackles materials with a completely random distribution of all the

Fig. 2. Two types of three-phase granular porous media.
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components [111,116]. Note that the expression for EMT model is
an implicit form of what proposed by Bruggeman [117,118], and it
takes other forms for spherical and ellipsoidal inclusions for
conductivity [119–121] and elastic moduli [122]. The Maxwell
models are likely the most widely used ones in the literature, with
the assumptions of a dispersion of small particles within a
continuous matrix phase and the particles being far apart from
each other so that the local distortions to the transport
characteristics around each particle do not interfere with their
neighbors [123]. The Maxwell model, which is actually also a
special case of the EMT models, has led to a huge derived variations
in dealing with transport phenomena, such as the well-known
Maxwell–Eucken model [124], the Maxwell–Garnett model
[125,126] and their sub-models [127–132]. The Hamilton–Crosser
model introduces a shape factor (n) into the expression so as to
deal with cases of non-spherical particle inclusions [133]. But
when n = 3, it turns into the case of spherical particles and back to
the Maxwell model, while n = 6 is for cylindrical particles. The

reciprocity model was based on the reciprocity theorem [134]
which assumes that a microstructure of two-component remains
statistically equivalent when exchanging the volume fractions of
the components [135,136]. Although the idea of this model appear
quite different from other models, its predictions agreed rather
well with experimental data [134], and the very same expression
was also derived from the Maxwell–Garnett-type approximation
by including the shape distribution effects [119].

These basic models provide acceptable predictions of the
effective properties for simple or simplified problems, but the
applicability and the accuracy of them are clearly very limited.
Three approaches have been proposed by different researchers at
different cases to more or less improve their capability by (i)
introducing empirical parameters to account for certain structure
characteristics [137–141]; (ii) combining two or more basic
models for more complex structures [142–146]; (iii) using a
network formed by huge number of Parallel and Series models
[147–153].

Table 1
Fundamental analytical models for effective properties of two-component materials

Model Structure schematica Expressionsb Reference

Parallel model le ¼ ð1� fÞl1 þ fl2 For conductivity: [111,112]

For elastic modulus: [113,114]

For thermal expansion coefficient: [115]

Series model le ¼ 1�f
l1
þ f

l2

h i�1
Same as parallel model

EMT model ð1� fÞ l1�le
l1þ2le

þ f l2�le
l2þ2le

¼ 0 [116–118]

Maxwell model le
l1
¼ 1þ 3ða�1Þf

ðaþ2Þ�ða�1Þf [123]

Hamilton model le
l1
¼ aþðn�1Þþðn�1Þða�1Þf

aþðn�1Þþð1�aÞf [133]

Reciprocity model le
l1
¼ 1þð

ffiffiffi
a
p
�1Þf

1þð
ffiffiffiffiffiffi
1=a
p

�1Þf
[119,134]

a Assuming the heat flow is in the vertical direction.
b Where l1 is the property of the continuous phase, l2 the property of the dispersed phase, le the corresponding effective property, f the volume fraction of the dispersed

phase, a the property ratio (a = l2/l1), n the shape factor of the dispersed phase.
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2.1.1.2. Combined models. Two approaches have been proposed in
combining the basic models to expand the applicability. The first
route is to convert a heterogeneous material into a system treatable
empirically by a weighted mixture of Parallel and Series models. The
effective property can then be calculated as a weighted mean of
corresponding properties of the components in Parallel and Series
arrangements. Harmonic, geometric and arithmetic schemes have
been proposed accordingly to calculate the weighted means [143–
145]. Like most empirical methods, predictions close to the
experimental data have been obtained for some cases when the
empirical parameters in the model can be determined. Another
combinatory rule was by Wang et al. [146] based on such concepts as
structure volume fraction and structure composition factor defined in
their paper. The approach was demonstrated to narrow the
prediction bounds for general two-phase granular materials.

2.1.1.3. Network models. Similar principle is applied in this appro-
ach where a complex microstructure of heterogeneous materials is
decomposed into a network consisting of a set of series/parallel
structural elements connected. Each element possesses properties
of a pure material or even effective ones of a composite itself. The
overall effective properties can then be calculated through the
parallel and series laws. Comparing with other theoretical models,
the network model is much more expensive because of larger
number of the basic elements involved, and hence only employed for
approximation of certain structures [147–153].

2.1.1.4. Theoretical bounds. In practice, another common way to
estimate the properties of two-phase materials is to find the
bounds or the ranges of the solutions, especially when the
microstructures are unknown or too complicated. As stated before,
the Parallel and Series models are also termed the Wiener upper
and lower bounds [112,154,155]. However, for most cases these
estimations are too rough, especially when contrast between the
properties of the components is large. Hashin and Shtrikman [156]
derived bounds based on assumed macroscopical isotropy and
quasi-homogeneity of the materials, by ignoring the influence of
the component shapes. The Hashin and Shtrikman (HS) bounds are
always narrower, i.e., more accurate, than the Wiener bounds. For
effective conductivities, the HS bounds are given as

ll
e

l1
¼ 1þ 3ða� 1Þð1� fÞ

3þ ða� 1Þf (1)

lu
e

l1
¼ aþ 3að1� aÞf

3aþ ð1� aÞð1� fÞ (2)

where le is the effective conductivity, l1 and l2 the conductivities
of the two phases, with l2 > l1, f is the volume fraction of phase 2,
and a = l2/l1; the superscript ‘‘l’’ represents the lower bound and
‘‘u’’ the upper bound.

For estimation of the elastic constants, it was proposed that
[157,158]

Ku
e ¼ K2 þ

1� f
ð1=ðK1 � K2ÞÞ þ ð3f=ð3K2 þ 4G2ÞÞ

(3)

K l
e ¼ K1 þ

f
ð1=ðK2 � K1ÞÞ þ ð3ð1� fÞ=ð3K1 þ 4G1ÞÞ

(4)

Gu
e ¼ G2 þ

1� f
ð1=ðG1 � G2ÞÞ þ ð6fðK2 þ 2G2Þ=5G2ð3K2 þ 4G2ÞÞ

(5)

Gl
e ¼ G1

þ f
ð1=ðG2 � G1ÞÞ þ ð6ð1� fÞðK1 þ 2G1Þ=5G1ð3K1 þ 4G1ÞÞ

(6)

where K represents the bulk modulus and G the shear modulus,
and the phase indices are chosen such that K2 > K1. The upper and
lower Hashin–Shtrikman (HS) bounds for Young’s modulus of the
material can be obtained as follows [157]:

EHS ¼
9KeGe

3Ke þ Ge
(7)

where the upper and lower Ke and Ge are defined in Eqs. (3)–(6).
These bounds are valid for all values of the phase stiffness ratio
[113,114]. Since the corresponding bounds on the effective Poisson
ratio in a form analogous to (7) were sometimes reported
erroneous, the corrected HS bounds of the Poisson ratio (n) were
provided in [159]

nl
e ¼

3K l
e � 2Gu

e

6K l
e þ 2Gu

e

; nu
e ¼

3Ku
e � 2Gl

e

6Ku
e þ 2Gl

e

(7a)

in which the upper bound of K must be paired with the lower
bound of G.

For the coefficient of thermal expansion, Schapery [160]
developed a model for both the upper and lower bounds:

Cl
e ¼ C1 þ

K2

Ku
e

ðK1 � Ku
e ÞðC2 � C1Þ

K1 � K2
(8)

Cu
e ¼ C1 þ

K2

K l
e

ðK1 � K l
eÞðC2 � C1Þ

K1 � K2
(9)

where C represents the coefficient of thermal expansion and K the
corresponding bulk moduli from the HS bounds.

2.1.2. Multiphase cases

A large number of theoretical models for prediction of effective
properties for multiphase materials have been developed, mainly
because of the significance and interest in the effective thermal
conductivity and permittivity of unsaturated soils. Roughly, the
models can be classified into three major categories.

2.1.2.1. Empirical equations. Various empirical equations have
been proposed to connect the effective property to the volume
fractions of the multiple phase components, by means of fitting the
experimental data [48,161–172]. For example, Cosenza et al. [164]
developed the following empirical equation, valid over the solids
thermal conductivity (ks) ranging from 2 to 5 W m�1 K�1, porosity
(e) from 0.4 to 0.6, and the volumetric water content (u) from 0.1 to
0.4

ke ¼ ð0:8908� 1:0959eÞks þ ð1:2236� 0:3485eÞu (10)

Such equations have proved to be useful in targeted cases,
however, with many limits associated with determination of the
empirical parameters absence of physical basis.

2.1.2.2. Modified mixing models. Based on the two-phase funda-
mental models, two schemes have been implemented for the
multiphase case. The first is to extend the two-phase basic models
directly to multiphase cases. For example, the Parallel and Series
equations were adopted for rough estimations of the effective
properties of multiphase materials [173]. For three-phase media,
Woodside and Messmer [174] proposed the ‘quadratic parallel’
(QP) model for the effective conductivity:

le ¼ fl1=2
1 f1 þ l1=2

2 f2 þ l1=2
3 f3g

2
(11)

where li with i = {1, 2, 3} is the conductivity of each phase and fi

the corresponding volume fraction. This model appears to be
applicable when i > 3. Various weighted average models have also
been proposed for such multiphase mixtures [175].
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The second route is to treat two of the multiple phases as one
single phase with their own effective properties and then to mix this
effective phase with another new phase, i.e., dividing a multiphase
material into combination of several two-phase systems. The
Maxwell models are the most suitable to developing such mixture
models in general, and the Maxwell–De Loor model in particular is
widely used, for it requires no geometrical parameters [176,177].
Dobson et al. [178] rewrote this model for a four-phase system into:

le ¼

3l1 þ 2ðf2 � f3Þðl2 � l1Þ þ 2f3ðl3 � l1Þ
þ 2ðf4 � f2Þðl4 � l1Þ

3þ ðf2 � f3Þðl1=l2 � 1Þ þ f3ðl1=l3 � 1Þ
þ ðf4 � f2Þðl1=l4 � 1Þ

(12)

As the Maxwell models are based on the assumption that the
dispersed phases are independently distributed in the continuous
phase with negligible interactions with each other, these types of
models fail to work properly if there exist any strong phase
interactions inside the materials, unless some empirical para-
meters are introduced to account for those influences [178].

2.1.2.3. Analytical solutions from physical laws. Such analytical
models can also be obtained from appropriate physical theories
and their analytical solutions. Among those the composite spheres
model proposed by Friedman [179] for effective dielectric constant
(permittivity) is the most notable one. The model considers an
unsaturated porous medium as an array of spherical inclusions
embedded in an infinite and macroscopically homogeneous matrix
and characterized by an overall effective dielectric constant ee. The
inclusions are much smaller than the operated wavelength in
measurements, and are in the form of spheres, each including all
the three phases as depicted in Fig. 3. Under quasi-static
conditions, the electrical potential field satisfies the Laplace
equation, and the continuity of both the potential and the normal
flux at the three inter-phases provides the boundary conditions.
The derivation of the self-consistent solutions [180,181] gives the
expression of the property ee in the three-phase cases as:

ee ¼ e1 þ
3½ðf3 þ f2Þðe2 � e1Þð2e2 þ e3Þ � f3ðe2 � e3Þð2e2 þ e1Þ�e1

ð2e1 þ e2Þð2e2 þ e3Þ � 2ðf3=f3 þ f2Þðe2 � e1Þðe2 � e3Þ
� ðf3 þ f2Þðe2 � e1Þð2e2 þ e3Þ þ f3ðe2 � e3Þð2e2 þ e1Þ

(13)

where the volumetric fractions of the three phase, fi, is defined as,
where Ri refers to the radii of the spheres

f1 ¼
R3

1 � R3
2

R3
1

; f2 ¼
R3

2 � R3
3

R3
1

; f3 ¼
R3

3

R3
1

: (14)

Miyamoto et al. [182] expanded Friedman’s three-layer
composite sphere model into four layers. Fig. 4 shows the
predicted results using the three- and four-layer composite sphere
models, respectively, in comparison with the experimental data.
The results indicate that no single model can give reasonable
predictions for the three-phase materials. Consequently, linear and
nonlinear [179] weight functions were proposed to combine two or
more such arrangements, but no clues given on how these weight
functions were determined.

In a separate effort, Gori and Corasaniti [183] built up a cubic
cell model for thermal conductivity of three-phase porous media.
Water absorbed was considered to either cover the solid particles
or form liquid-bridges between different particles. Analytical
models were thus derived. Unfortunately, the critical water
content for liquid-bridge formation was unknown and had to be
determined empirically, hence causing gross errors in predictions.

2.2. Limitations and challenges

Although theoretical models for predictions of effective proper-
ties of complex materials have been extensively explored, the
inherent limitations in these models greatly restraint their
capability. The limitations in the existing theoretical models, and
thus the challenges in developing new ones, are summarized below.

(i) Most existing theoretical models are based on simplified
physics with certain over-idealized assumptions. This may
make the models easy and quick to use, but the simplifications
also restrict the models to only simple structures.

(ii) Any efforts in combining the models for more complex
structures will lead to escalating in model complexity and
computational costs. Most modifications to improve the
accuracy of the models will in turn narrow their applicability.

(iii) The empirical parameters introduce factors with no physical
significance, whose values have to be determined case by case,
thus rendering the models more difficult to use.

(iv) Most existing theoretical models can only handle simple
structures and thus become powerless once encountering
complex materials. Consequently, none of the existing models

Fig. 3. A schematic description of the three-phase composite sphere model by

Friedman [179].

Fig. 4. Predictions by the composite sphere models compared with the

experimental data [169]. ASW refers to air–solid–water arrangement; SWA,

solid–water–air; AWSA, air–water–solid–water; WSWA, water–solid–water–air.

The four-layer model uses AWSA arrangement when the volumetric water content

is less than 0.31 and WSWA otherwise.
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is able to tackle directly the effects of morphological changes
in the microstructure on the material properties.

(v) The existing theoretical models are largely incapable of
dealing with the issue of phase interactions in multiphase
systems, such as in a liquid–solid wetting process, the liquid
phase distribution and their collective influence on the overall
effective properties of the materials.

(vi) Even for the relatively successful theoretical models, they can
only calculate the properties of existing materials, rather than
make predictions for new material. Therefore, they are not of
much value in optimizations or design for novel materials.

3. Numerical methods

Given the limited power of the existing theoretical models in
dealing with complex materials, the numerical methods are
becoming increasingly important and more widely used in
material science and engineering [184,185]. Especially, the rapid
development of computational techniques in the past decades has
tremendously enhanced our numerical capacities in modeling the
multiphysical behaviors of multiphase materials, and enabled
more accurate and robust approaches in prediction and design of
more novel material systems. As stated repeatedly before, the
effective properties of a complex material are determined by the
collective contributions of the individual components, and by their
internal structures. As a result, a complete numerical determina-
tion of the effective properties of multiphase media has to include
such two major steps as first to reproduce properly the multiphase
microstructures using computer algorithms, and then to solve the
relevant transport governing equations (partial differential equa-
tions) with acceptable efficiency and accuracy.

3.1. Structure characterization and reproduction algorithms

3.1.1. Structure characters of multiphase complex materials

Considering the random and irregular microstructures of
multiphase materials, at least five major structural characteristics
can be identified:

Heterogeneity: Multiphase complex materials are made of two
or more components/phases which are rarely distributed
uniformly, and each component has its own properties and
proportion, and thus contributes towards the effective system
properties differently [186,187].
Interactions: As a result of mixture, both the phase distributions
and inter-phase interactions become highly essential for the
overall material behaviors [13,14].
Structure Geometrical Varieties: The microstructures of the
complex media can be roughly divided into three distinct types:
particle-like, fiber-like and netlike. As the property and
geometry, distributions, inter-connections and couplings are
totally different between each type, no generalized algorithms
have been established to tackle such variations.

Randomness: Microstructures of multiphase materials mostly
have strong stochastic characteristics, i.e., the shape, location
and orientation of the structure elements, and the connections
between them are all random to certain degree. For this reason,
there are nearly no two materials, or even no two pieces of the
same material, that possess exactly the same microstructure in
every detail. The concept of the equivalent structures becomes
more meaningful, i.e., structures formed based on certain
statistical information from the original material and yielded
the same effective properties. Such statistical information from
real microstructures makes an equivalent structure realizable
using computer algorithms [188].

Multiscale Hierarchy: As the rapid development of the micro-
scopy technique, more observations and measurements have
indicated that the microstructures of porous materials are
actually of hierarchal multiscale, meaning each single ‘‘ele-
ment’’ at one scale level can show a porous microstructure of its
own at a still lower level [189,190]. The multiscale micro-
structure and its effects on material properties are a very
interesting and important topic for material design.

3.1.2. Material structure reproduced in a computer

Several methods have been proposed to reconstruct the
microstructures of multiphase materials using computers, and
they can be divided into two classes/levels based on the
methodologies. The methods at the primary level are the so-
called apparent-similarity methods. The Random Location of
Obstacles is the simplest one for two-phase granular microstruc-
tures. Each imaginary obstacle stands for a particle when the
particle geometry details are negligible [191,192]. For instance,
Tacher et al. [193] presented a discrete reduced-distance method
to generate spherical/elliptical two-phase granular porous media.
Based on Tacher’s work, Pilotti [194] developed a grain sedimenta-
tion algorithm. Yang et al. [195] and Li et al. [196] used the
assemblies of three-dimensional spheres with random size to
reconstruct the microstructures of porous media. All these
methods indeed created two-phase structures with random size
and details. However, none of them can deal well with the
interactions between the grains, thus unsuitable for energy/
electric transfer problems that are extremely sensitive to contacts.

Given the significant influences of the geometric details such
as the element shapes, orientations and connections, on the
materials properties, a few newer methods aimed at approaching
the real structures in more geometric details have been
proposed, the so-called detail-similar methods. As the micro-
scopy instruments and the observation technologies are well
developed now, the image mapping has become a highly
powerful tool for this purpose [197,198]. Better reconstruction
processes have been used to generate two-phase [199,200] and
multi-component [201,202] random structures of porous mate-
rials based on the digital microtomographic information and
statistical correlation functions. A similar algorithm has been
found in the soil research, termed as the Markov chain Monte
Carlo method, which created two-dimensional structures with
satisfactory agreement using the scanned images of real soil
samples [203,204]. More about these reconstruction methods
based on image mapping can be found in some review papers
[187,202,205] and books [206,207]. For fibrous porous materials,
Pan et al. have done a series of analysis to theoretically
characterize the microstructure using the statistical density
distribution function approaches [26,208].

Moreover, for multiphase materials, their microstructures can
be influenced by the phase interactions. When such interactions
are non-negligible, approaches have to be developed to reflect the
influences during structure generation. To our best knowledge, this
issue has seldom been systematically investigated. Losic et al.
[201] proposed a reconstruction process with given phase
probabilities and an overall correlation function to form lamellar
clay films on solid surfaces and dispersed clay dots on solid
structures. A few other researchers used the liquid-bridge
structures for water distribution in unsaturated porous media
[54,209,210]. This model may be valid for very smooth, hydro-
phobic and well contacted solid spheres, yet cannot be generalized
for random porous media. In addition, Mohanty [211] adopted a
Monte Carlo annealing algorithm to generate unsaturated porous
media by using the law of lowest interfacial energy, but it failed to
differentiate various liquid–solid interactions.
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3.1.3. A random generation-growth method

The stochastic and statistical characteristics are two key natures
in the microstructures of complex multiphase materials, as
discussed above. Such stochastic characteristics reveal two things:
(i) even in the real world, it is hard to find two materials that have
exactly the same microstructure in every detail. This indicates that
it is not necessary to duplicate in computer algorithm the
microstructure of real materials in the exact duplicate. (ii) Random
factors have to be incorporated into the reproduction process. The
statistic characteristics also indicate two clues: (i) we can
reproduce an equivalent microstructure for each real structure,
where only the effective factors contributing to the material
properties are taken into account; (ii) the equivalent microstruc-
ture owns the same major geometric statistical features as the real
one but not in every detail. Based on these characteristics and
inspired by the cluster growth theory [212], Wang et al. [17,213–
216] proposed a multi-parameter random generation-growth
method to reproduce the random multiphase microstructures
using given statistical information. The basic idea of the method is
shown in Fig. 5. The random generation-growth (RGG) method is
designed to reproduce structural assembles of elements with
random sizes, locations and orientations, and connections, each of
which grows from also randomly distributed seeds and the growth
is guided by a few given probabilistic growth rates. For different
types of microstructures (granular, fibrous or netlike), the
algorithms will be different but still bear the same principles.

3.1.3.1. Granular structure. The random generation-growth algo-
rithm for granular media, also termed as the Quartet Structure
Generation Set (QSGS) [17,213] in which four parameters are
identified for controlling the internal porous structure, can be
described as follows.

Before initiation, one has to determine among the different
phases in a system a non-growing phase and the rests are the
growing ones. For generality, we call the growing phase as the nth
phase, where n = 2 to N, the total number of phases in the system.
Customarily and without losing generality, the discrete phases are
normally taken as the growing phases. For example, rocks and
moisture are the growing phases in unsaturated sands, whereas
gas is the growing phase in polyurethane foams. Then the growing
process follows the steps below.

(I) Randomly locate the cores of the first growing phase in a grid
system based on a core distribution probability, cd, whose value is
no greater than the volume fraction of the phase. Each cell in the
grid will be assigned a random number by a uniform distribution
function within (0, 1). Each cell whose random number is no
greater than cd will be chosen as a core; (II) Expand every element
of the growing phase to its neighboring cells in all directions based
on each given directional growth probability, Di, where i represents
the direction. Again for each growing element, new random
numbers will be assigned to its neighboring cells. The neighboring
cell in direction i will become part of the growing phase if its
random number is no greater than Di; (III) Repeat the growing
process of (II) until the volume fraction of the first growing phase
reaches its given value f2 (if the growing phase is gas, f2 is more
often expressed as the porosity e); (IV) As to the next growing
phase, there are two cases to consider depending on its interaction
with the existing phase(s). If this phase is an equivalent discrete
phase as the existing growing phase, such as multi-component
mixture, it grows from separate seeds, which is very similar as the
first growing phase described in (I)–(III). Otherwise, we have to
consider the constraint by and interaction with the existing
phase(s). For such cases, the nth phase (n > 2) will grow based on a
phase interaction growth probability, In;m

i , which represents the
growth probability of the nth phase on the mth phase along the ith
direction; (V) Stop the nth phase growth once its volume fraction
reaches the given value fn; (VI) Repeat the next phase growth as
described in (IV) and (V) until n = N; (VII) The spaces not occupied
at the end represent the non-growing phase.

Thus, the four parameters (cd, Di, fn, and In;m
i ), essentially

control the microstructural characteristics of the generated porous
media based on our QSGS process. The parameters can be
determined through the statistical analysis of measured data,
such as from the X-ray microtomography technique, or through
first principle modeling such as molecular dynamics (MD)
simulations. Each parameter has physical significance, rather than
just an empirical factor.

The core distribution probability cd is defined as the probability
of a cell to become a core of the first growing phase on which
growth or expansion of the first phase originates. The value of cd

indicates the number density of growing cores for the first growing
phase, to reflect the statistical distribution of the first growing

Fig. 5. Microstructure reproduction schematic of the random generation-growth method.
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phase throughout the system. For a given porosity, the average
volume of each solid particle Vs could be related with cd as:
Vs = (1 � e)V/(Nc�cd) where V represents the total volume of system,
and Nc the total cell number. The cd value thus also controls the
degree of structure details of a system; a smaller cd leads to a finer
description of the microstructures including particle/pore shapes
and inter-particle/pore connections, etc. However, a small cd value
will also decrease the statistical particle numbers for a given grid
size and thus increase the computation fluctuation.

The directional growth probability Di is defined as the
probability for a yet-to-be-occupied cell to merge into a
neighboring cell in the ith direction to become part of the growing
phase. An appropriate arrangement of the directional growth
probabilities may lead to an isotropic structure. In other words, the
growth probabilities can be adjusted to control the degree of
anisotropy. For two-dimensional cases specially, each square cell
has eight growing directions to its neighbors, as seen in Fig. 6.
There are four main directions (1, 2, 3, 4) and four diagonal
directions (5, 6, 7, 8). To obtain an isotropic structure in such
systems, we set both the main directional growth probabilities D1–

4 and the diagonal directional growth probabilities D5–8 into
respective constants in each group, and set both constants in a
fixed ratio. For instance, by designating the probabilities ratio, D1–

4:D5–8 = 4, we get the directional growth probability consistent
with the equilibrium density distribution function for isotropic
materials [217]. For three-dimensional structures, a similar
probabilities ratio was used [218], yet more validations are needed
in the future work. The relative value instead of the absolute value
of Di actually controls the anisotropy of structure.

For multiphase porous media systems (n � 3), the interactions
between different discrete phases become even more complex, and
we have to consider the effects of such interactions during the
phase growth. Such effects are important especially for instance in
unsaturated porous media soaked by a liquid that wets other
phases in the system differentially. In such systems, the growth
order of the various phases is important. Generally the solid phase
is selected as the first growing phase and then the liquid phase
grows under the influences of phase interactions. The phase
interaction growth probability, In;m

i , i.e., the growth probability of
nth phase on the surface of mth phase along the ith direction, is
hence introduced to account for this influence by assigning
different values to In;m

i for different materials. The value of the
phase interaction growth probability In;m

i could be determined by
analyzing the scanned pictures of phase distributions or by
calculating from the wetting properties directly.

Fig. 7 shows six schematic illustrations of the porous structures
generated using the QSGS method, where the stochastic character-
istics are depicted very realistically in the figures. The first four
figures represent two-phase cases, where the white area corre-
sponds to the growing phase (solid) and the black the non-growing
phase (gas). The parameters for Fig. 7a are cd = 0.01, fs = 0.3,
D1,3 = D2,4 = 4D5–8. Fig. 7b shows the case with a larger solid volume
fractionfs, i.e., both the volume and the inter-particle connections of
the solid phase increased. Comparison between Fig. 7b and c shows
the effect of the core distribution probability cd on the generated
microstructure, and a higher value of cd leads to a more uniform
phase distribution of the medium. When the directional growth
probability is not the same in every direction, the isotropy will be
destroyed. Fig. 7d shows the generated anisotropic structure, where
the horizontal growth probability is ten times of the vertical one,
D1,3 = 10D2,4 and D2,4 = 4D5–8. Fig. 7e and f show the phase
distributions of three-phase porous medium using different phase
interaction probabilities. The black is the non-growing phase (gas),
the grey is the first growing phase (solid), and the white is the second
growing phase (liquid). The phase interaction probability dictates

the distribution status of the second growing phase. A high value of
liquid–solid interaction means a strong wetting property of the
liquid on the solid surface so that the liquid will distribute like a film
on the solid surface, as shown in Fig. 7e. On the contrary, a strong
liquid–liquid interaction probability leads to a high degree of liquid
aggregation, and the liquid exists as droplets or liquid-bridges on the
solid particles (see Fig. 7a–f).

Compared with most of the previous reconstruction methods,
the QSGS method has the following merits: (i) Both stochastic and
statistic features are incorporated into the generation-growth
process, and therefore the generated microstructure is closer to a
real one. (ii) Each of the parameters in the algorithm has a distinct
physical meaning, instead of just being an empirical coefficient.
(iii) The multi-body connection problem is thus solved. (iv) The
method is efficient without turning to any iteration process. (v) The
algorithm can be extended straightforwardly to three-dimensional
and/or multiphase cases, and is suitable for parallel computing.

3.1.3.2. Fibrous structure. The random generation-growth algo-
rithm for fibrous structures is much easier if one assumes that each
fiber is represented by a straight line with given diameter d and
length l, and located by its core position and orientation angle u, as
illustrated in Fig. 8. Similar assumptions can be found in many
previous studies [219]. The generation process for two-dimen-
sional (2D) structures is conducted as follows [214].

(I) Randomly locate the fiber cores based on a core distribution
probability, cd, and the core position distribution function, F. The
core distribution probability cd is defined as the probability of a
point to become a core of the fiber, and this cd value is related to the
fiber number density. The core position distribution function F

could be a uniform, a normal or any other distribution function of
position (x, y); (II) randomly assign an orientation angle u to each
fiber core, and u ranges within [�ulim, ulim]; (III) grow fibers from
each cores along both directions of the orientation u for fiber length
and crosswise for fiber thickness; (IV) stop growth once fiber
dimensions, d and l, reach the specified values, or the overall
porosity attains the given level e. Thus, there are six parameters, cd,
F, ulim, d, l, and e collectively controlling the resulting structure.

Fig. 9 shows an example of a generated fibrous structure in
200 � 200 grids for cd = 0.0025, d = dx, l = 100dx, ulim = p/2, and a
uniform distribution. The fibers are in dark and the continuous
phase in white. This 2D algorithm has been extended to 3D by
simply adding another orientation angle to control the fiber
growth direction in the 3D space [215].

Fig. 6. Eight growth directions of each cell for 2D granular systems.
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3.1.3.3. Netlike structure. The netlike structures, such as the open-
cell foam, are a little more complex, and few approaches available
in the public can tackle such structures with an acceptable
accuracy. Calmidi and Mahajan [22] and Bhattacharya et al. [20]
depicted this type of structure using an array of hexagonal cells
with lump formed at the intersection. Boomsma and Poulikakos
[220] modeled such structures in three dimensions in the form of
tetrakaidecahedral cells with cubic nodes at the intersection.

However, such existing models have to use an empirical parameter
to account for the effects of the inter-cell connections.

Under the same idea of random generation-growth method, the
main process of reconstruction for netlike structures for a two-
dimensional two-phase (2d2p) case can be described as follows.

(I) Stochastically distribute the cores as the net nodes on a
lattice system based on a give probability cd, similar to the other
generation processes; (II) For each net node, search outward to the

Fig. 7. Schematics of the generated porous structures using QSGS method in 200 � 200 grids. (a) cd = 0.01, fs = 0.3; (b) cd = 0.01, fs = 0.6; (c) cd = 0.1, fs = 0.6; (d) cd = 0.01,

fs = 0.3, D1,3:D2,4 = 10; (e) Il;l
i : Il;s

i ¼ 1; (f) Il;l
i : Il;s

i ¼ 10.

Fig. 8. Growing fibers and parameters. Fig. 9. A reconstructed fibrous structure.
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neighboring nodes and randomly select Nn of them as the link
nodes; here N is determined based on the features of specific
porous media. Genetic algorithm or other searching algorithms
could be used for this process. (III) Grow link lines from a net node
to each of its N link nodes. Again the random rejection–acceptance
rule is applied to the process and in the end every node will
connect with other nodes with Nn link lines so as to form such a
network. Fig. 10 shows two reproduced netlike structures on a
200 � 200 grid with Nn = 4.

3.2. Solutions of the governing laws

After the microstructures are reconstructed, the governing
equations for transport in the materials need to be solved
numerically for the effective properties of multiphase material
systems. The conventional partial differential equation (PDE)
solvers, such as finite difference method (FDM), finite element
method (FEM) and boundary element method (BEM), have been
applied to tackle the governing equations in multiphase media of
heat transfer [221–227] and electric field transports [228–237].
However, the structural complexities bring in two difficulties. The
first is the requirement of grid refinements for complex structures:
the accuracy of such conventional numerical methods is strongly
dependent on the grid size, so that an extra-fine grid is needed
whenever the transport process is complex in physics and/or in
geometry. Consequently, when dealing with multiphase transport
problems in porous media with complex geometries, the extreme
complexities and the corresponding computation intensity will in
practice confine the computational domain in a very limited area.
The second is the conjugate constraints at interfaces between
different phases: for steady electric field transport through
multiphase structures for instance, electric potential and flux
continuities have to be ensured at the interfaces when solving the
governing equations, thus demanding enormously high computa-
tional resources for a porous medium with innumerable interfaces
in the structure.

Recently the stochastic methods for representing the perturba-
tions in porous media have gained much attention [238,239].
Shoshany et al. [240] and Barta and Dieska [241] modeled the
thermal conductivity of porous materials using the Monte Carlo
method to reflect the structural fluctuations during the process.
Yue et al. [242,243] developed a lattice gas automata method to
predict the electric transport properties in two-dimensional

multiphase porous media. Owing to its easy implementation of
multiple inter-particle interactions and complex geometry bound-
ary conditions [218,244–250], and that in general the conservation
laws can hold automatically without additional computational
efforts [251–254], the lattice Boltzmann method (LBM) has
recently been developed successfully for modeling of hydrody-
namics [185,250,251], thermodynamics [255–257] and electro-
dynamics [254,258] in multiphase systems and the effective
properties can be consequently calculated.

3.2.1. Governing equations

Let us consider thermal or electric transport through a
multiphase material system as shown in Fig. 11. To determine
the effective conductivities, a set of transport governing equations
need to be solved. Considering a steady and pure thermal or
electric transport process without contact resistance, radiation,
phase change or other influences from the source, the governing
equations can be summarized as follows.

Once the effective medium theory (EMT) is applicable [259], the
thermal or electric transports in a multiphase medium is governed
by a Laplace equation [231,236]:

r � ðlnrFÞ ¼ 0 (15)

Fig. 10. A reproduced netlike random microstructure of a two-phase system. The dark is the solid and the white the air. (a) e = 0.8888 and (b) e = 0.7373.

Fig. 11. Schematic diagram of domain and boundaries.
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where ln is the local conductivity of the nth phase, which could be
thermal conductivity or electric conductivity/dielectric permittiv-
ity for a given case, and correspondingly, F would be the thermal
potential/temperature [221–227,260] or the electric potential
[228–236,261].

Two points in Eq. (15) should be noted. First, only steady-state
transport is described by the equation, because the unsteady terms
have no contribution to the effective properties. Second, the local
property (ln) should not be moved outside of the divergence
operator since it changes its value with the position, leading to
incorrect predictions [262].

At the interfaces between two phases (i and j) in equilibrium,
the continuities of both potential and flux have to be satisfied, i.e.,

Fint;i ¼ Fint; j (16)

lirFjint;i ¼ l jrFjint; j (17)

where the subscript ‘‘int’’ corresponds to the interfaces between
phase ‘‘i’’ and ‘‘j’’. Eq. (15) thus governs the distribution of potential
F in the multiphase material, subject to the interface constraints in
Eqs. (16) and (17). After the potential field is derived, the effective
conductivity can be determined as

leff ¼
qL

DF
(18)

where q is the steady flux through the material between the
potential difference (DF) over a thickness L.

Very similar governing equations have been derived for
mechanical elastic properties with the assumptions of steady small
elastic strain in the direction of the force with negligible multi-
dimensional deformation effects [263–265]. For the mechanics
equation, ln in Eq. (15) represents the local mechanical modulus,
either Young’s modulus or shear modulus,F the displacement in the
direction of force, and q the stress in a given direction. Unlike the
other transport properties, such a governing equation for mechan-
ical moduli has rarely been employed to numerical calculation of the
effective properties of multiphase materials. The likely first attempt
has shown successful applications [265].

3.2.2. A Lattice Boltzmann solver

The lattice Boltzmann method (LBM) is intrinsically a meso-

scopic computational fluid dynamics (CFD) approach based on the
evolution of statistical distribution on lattices, and has achieved
considerable success in simulating fluid flows and associated
transport phenomena [251,253]. For more details about the LBM,
one can consult excellent book [252] and review papers [185,251].
The most important advantages of LBM include the easy
implementation of both multiple inter-particle interactions and
complex geometry boundary conditions [218,244–250]. Conserva-
tions can generally hold automatically without additional compu-
tational efforts [252,254,256,266].

The original lattice Boltzmann model for single time Bhatna-
ger–Gross–Krook (BGK) relaxation collision operator [251] is used
to solve the Navier–Stokes (NS) equation for fluid flow. The
evolution equation is

f aðrþ eadt; t þ dtÞ � f aðr; tÞ ¼ �
1

tn
½ f aðr; tÞ � f eq

a ðr; tÞ� (19)

with a local equilibrium distribution function

f eq
a ¼ varf 1þ 3

ea � u
c2
þ 9
ðea � uÞ2

2c4
� 3u2

2c2

" #
(20)

and

tn ¼ 3n
dt

d2
x

þ 0:5 (21)

where tn is the viscosity-based dimensionless relaxation time, n
the kinematic viscosity, dx the lattice constant, and dt the time step.

It has been proved that through the Chapman–Enskog multi-
scale expansion, the Lattice BGK equation is consistent with the
incompressible Navier–Stokes equation [251,267]:

@u

@t
þ u � ru ¼ �r pf þr � ðnfruÞ (22)

Inspired by this process, and by treating the generalized
governing equation (Eq. (15)) as a special case of the NS equation
(Eq. (22)), the lattice evolution equation can be expressed as
[256,257]:

gaðrþ eadt ; t þ dtÞ � gaðr; tÞ ¼ �
1

tn
½gaðr; tÞ � geq

a ðr; tÞ� (23)

where geq
a is the local equilibrium distribution in each direction, ea

the discrete lattice velocity, and tn the dimensionless relaxation
time for local phase. The equilibrium distribution of the evolution
variable, ga, for the two-dimensional nine-speed (D2Q9) model is

geq
a ¼

0; a ¼ 0
F
6
; a ¼ 1;2;3;4

F
12
; a ¼ 5;6;7;8

8>>><
>>>:

; (24)

the microscopic velocity

ea ¼
ð0;0Þ; a ¼ 0

ðcos ua; sin uaÞ; ua ¼ ða� 1Þp=2; a ¼ 1;2;3;4ffiffiffi
2
p
ðcos ua; sin uaÞ; ua ¼ ða� 5Þp=2þ p=4; a ¼ 5;6;7;8

8><
>: ;

(25)

and the dimensionless relaxation time

tn ¼
3

2

ln

c2dt
þ 0:5; (26)

where dt is the time step, and c is the lattice speed whose value in
theory can take any positive value provided the resulting tn value is
within (0.5, 2) [254,256].

For a three-dimensional fifteen-speed (D3Q15) model shown in
Fig. 12, there are

geq
a ¼

0; a ¼ 0
F
9
; a ¼ 1�6

F
24
; a ¼ 7�14

8>>><
>>>:

; (27)

ea ¼
ð0;0;0Þ; a ¼ 0
ð�1;0;0Þc; ð0;�1;0Þc; ð0;0;�1Þc; a ¼ 1�6
ð�1;�1;�1Þc; a ¼ 7�14

8<
: ; (28)

and

tn ¼
9

5

ln

c2dt
þ 0:5; (29)

Both the potential and flux can then be calculated according to
[268]

F ¼
X
a

ga; (30)

q ¼
X
a

eaga

 !
tn � 0:5

tn
: (31)

Once the potential field is solved, the effective conductivity, leff,
can be determined as

le ¼
L �
R

q � dA

DF
R

dA
; (32)
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For the Dirichlet boundary treatment, we follow the bounce-
back rule of non-equilibrium distribution proposed by Zou and He
[269]:

ga � geq
a ¼ �ðgb � geq

b Þ; (33)

where a and b represent the opposite directions, and the
equilibrium distribution can be calculated based on the local
boundary temperature. For the insulated boundaries, a specular
reflection treatment is implemented to prevent heat flux from
leaking along the insulate surfaces. It has been proved that the
current boundary treatments have second-order accuracies [269].

3.2.3. Benchmarks

The lattice Boltzmann algorithm and codes were numerically
validated by two basic structures of dual-component systems: the
Parallel mode and the Series mode. Assuming the conductivity of
each component is k1 and k2, respectively, the theoretical solutions
predict the effective conductivities as (k1 + k2)/2 for the parallel
mode and 1/(1/2k1 + 1/2k2)/2 for the series mode [111,112].
Table 2 lists the calculated effective thermal conductivities by the
present model in comparison with the theoretical solutions for
different values of k1:k2. We keep k1 as 1.0 while changing k2 from
10 to 10,000. Such a large contrast between k1 and k2 leads to a
longer computational time for any algorithms to converge, yet
provides a more strict test on the LB model. The deviations in
Table 2 between the predictions are no greater than 0.006% for the
Parallel mode and 0.765% for the Series mode even under such
large conductivity contrasts, showing a good accuracy of the lattice
Boltzmann method.

Next, the lattice Boltzmann method was validated by simulat-
ing the transport process in functionally graded materials with

continuously varying properties. Consider the cube problem with
given property gradations only along the z-axis, and is position
dependent only. Let the potential at the top surface maintain at FT

and that at the bottom FB = 0. The conductivity at the bottom
surface is l0. Three cases are considered with, respectively, the
quadratic, exponential and trigonometric property gradations in
the z-direction.

Quadratic:

l ¼ l0ð1þ bzÞ2 (34)

Exponential:

l ¼ l0 e2bz (35)

Trigonometric:

l ¼ l0ða1 cos bzþ a2 sin bzÞ2 (36)

The corresponding steady analytical solutions of the potential
distribution for these three cases are [226]

Quadratic:

F ¼
ffiffiffiffiffiffi
l0

p
ð1þ bLÞzFTffiffiffiffi

l
p

L
(37)

Exponential:

F ¼ FT
1� e�2bz

1� e�2bL
(38)

Trigonometric:

F ¼
ffiffiffiffiffiffi
l0

p
ða1 cos bLþ a2 sin bLÞFT sin bzffiffiffiffi

l
p

sin bL
(39)

Fig. 13 compares the potential distributions of the three
analytical solutions, with our numerical predictions using the
present lattice Boltzmann method. The dimensionless parameters
used are l0 = 10, b = 2, FT = 1, L = 1, and a1 = a2 = 1. The solid lines
are the analytical solutions and the symbols are our numerical
predictions. 200 � 200 � 200 3D grids are used in the simulations.
The excellent agreements in the figure thus validate the present
algorithm and the computation codes.

On the computational efficiency, the lattice Boltzmann method
has been compared with the conventional CFD methods by
simulating the same conjugate heat transfer problem in thick
straight-wall channels [256]. Fig. 14 shows the calculated
temperature at the middle of the channel varying with the mesh
number in the x-direction, by the two different methods. The
results indicated that the conventional CFD (performed by Fluent
6.22) needs at least 5–10 times finer grid divisions to reach the
same accuracy as the LBM. Such an advantage of LBM will become
much more apparent in dealing with complex geometry, a key
feature of porous media.

Table 2
Comparisons between our predicted results and existing theoretical solutions, k1 = 1.0

Results, k1:k2 Parallel mode Series mode

Theoretical value Present predictions Relative deviations (%) Theoretical value Present predictions Relative deviations (%)

1:10 5.500 5.500 0.000 1.818 1.815 0.165

1:100 50.50 50.50 0.000 1.980 1.976 0.202

1:500 250.5 250.5 0.000 1.996 1.991 0.250

1:1000 500.5 500.5 0.000 1.998 1.993 0.250

1:10,000 5000.5 5000.2 0.006 1.9998 2.0151 0.765

Fig. 12. The lattice direction system (a) for D3Q15 model.
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4. Applications

It is one of the most fundamental goals in materials science to
establish connections between the macro behaviors of a material
and the corresponding properties of each inclusion. Inherently, two
major issues appeared—the internal morphology of the material
formed by the constituents, and the interactions among themselves.
However, even for simple cases, bringing these two factors into a
theoretical treatment often poses as a challenge except for highly
regular structures. Once materials become more complex with
irregular internal morphology and formed by constituents of
different phases, dealing with such issues turns into a daunting task.

However, in the set of novel mesoscopic numerical methods
introduced in the last section, two steps were performed to tackle
the issues. First, the equivalent multiphase microstructures were
reproduced by a multi-parameter random generation-growth
method based on the statistical information of real structures
from experiments or existing data. Second, the related governing
equations on transport processes were numerically solved by a
high-efficiency lattice Boltzmann method. Such methods enable us

not only to calculate the properties of the existing structures of
materials, but also to predict those of new or even materials
nonexistent in nature.

This section is to demonstrate the power of the new methods by
dealing with several transport problems. For each problem, the
methodology is first validated by comparing the yield predictions
with the existing experimental data from the literature. Subse-
quently the major structure effects on the effective properties of
these materials are systematically studied, including the morphol-
ogy effects, anisotropy effects and size effects. For materials with
three or more phases, the phase interaction effects on the effective
properties are also treated. Finally as an extra application, the
examination and comparison of available experimental techni-
ques, based on the numerical results, are provided in Section 4.6.

4.1. Different physical properties in transport

As stated above, since some different physical processes share
the same governing equations (Eqs. (15)–(17)) under certain
assumptions, our new mesoscopic methods are employed below
for predictions of various physical properties, including the
thermal conductivity, the electric conductivity/dielectric permit-
tivity, and the elastic moduli. The calculated results were
compared with the existing experimental data.

4.1.1. Thermal conductivity

Among all physical properties of multiphase material systems,
the thermal and electrical conductivities are the mostly studies ones
due to their significance and wide applications. There are large
number of experimental data available for validation purpose.

4.1.1.1. A two-phase granular composite. Consider a Cu/solder
composite, where the Cu particles are uniformly dispersed in
the solder mass [270]. To reproduce the two-dimensional
microstructure of this two-phase granular composite using the
QSGS [17], the solder is selected as the non-growing (first) phase
and the Cu particles are the growing (second) phase. The structure
is considered as isotropic. Since the Cu particle size was not
provided in the literature [270] where the experimental data we
collected, the parameter in QSGS on the growing phase size has to
be estimated as cd = 0.01. The component thermal conductivities
are kCu = 398.0 W/m K, and ksolder = 78.1 W/m K [270]. Fig. 15

Fig. 14. Temperatures at the middle of the thick and straight-wall channel by CFD

and LBM versus the mesh number in x-direction. Square grids are used.

Fig. 13. Potential profiles in the z-direction. The parameters used are l0 = 10, b = 2,

fT = 1, L = 1, and a1 = a2 = 1. The solid lines are analytical solutions and the symbols

are numerical predictions.

Fig. 15. Comparisons between predictions and experimental data for Cu/solder

material. The experimental data is from Ref. [270]. The parameters are

kCu = 398.0 W/m K and ksolder = 78.1 W/m K.
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shows the effective thermal conductivities calculated by the new
mesoscopic method, as a function of Cu volume fraction, f2,
compared with the experimental data from Ref. [270]. The
numerical results agree with the experimental data fairly well.

4.1.1.2. A three-phase granular material. Unsaturated soil repre-
sents a typical case of three-phase granular material systems.
Customarily, the porosity, e, is defined as the total volume fraction
of both air and the liquid. The degree of saturation, S, is the liquid
volume fraction within the fluids. Therefore, the solid phase, the
liquid phase and the gas phase have the volume fractions of (1 � e),
eS and e(1 � S), respectively. To reconstruct a three-phase isotropic
microstructure, the parameters used in QSGS are cd = 0.01, and
I3;2
i ¼ I3;3

i for each i-direction. Fig. 16 shows the predicted effective
thermal conductivities versus the degree of saturation S at e = 0.52
for moist porous brick sands, in both the frozen and unfrozen
states. The thermal conductivities used in the simulations are
ks = 2.85 W/m K, kw ¼ 0:5924 W=m K, kg = 0.0249 W/m K, and
kice = 2.38 W/m K [271,272]. A 200 � 200 grid is used in the
simulations, yielding the random fluctuation within 3%. The
numerical results are compared with the experimental data
[271,273]. Once again, good agreements are obtained with the
experimental data for both frozen and unfrozen cases.

4.1.1.3. Fibrous composites. It has been attractive to use carbon
fiber for its excellent performance acting as fillers in composite
materials to improve the thermal, electrical and mechanical
performances. One typical example is for nanofluids [31,274,275].
It has been reported that by just adding 1% volume faction of
carbon nanofibers into oil to form a nanofiber-in-oil suspension,
the thermal conductivity of the oil was enhanced up to 150% [31].
However, the extremely high aspect ratio and the very small
volume fraction of the nanofibers brought big challenges in
reconstruction of such a fibrous structure. The predictions became
fluctuated due to the low fiber loadings. In another case, Frusteri
et al. [32,33] have recently measured the thermal conductivity of a
phase change material containing carbon fibers. The fiber loading
is much higher (up to 10 wt.%). Here we compare their experi-
mental data with our mesoscopic numerical predictions. Because
little structure information was provided with the experimental
measurements, we have to estimate the statistical parameters for
structure reproductions. To reduce the computational load, the

microstructure was reconstructed in a 60 � 60 � 60 3D grid
system. To reflect the high-aspect ratio without losing the fiber-
end transport effects, the fibers were generated with L = 120 by
performing a periodic treatment when the growth met the
boundaries. The width of each fiber was assumed as one unit
grid size and the orientation angle of the fibers was uniformly
random so that the structure was isotropic. The thermal properties
used in our simulations are kf = 180 W/m K and km = 0.47 W/m K
[32]. Fig. 17 shows good agreement between our predictions and
the measured data when the volume fraction is lower than 6%.
When the fiber fraction is high, the inter-fiber contacts will affect
the effective thermal property. Because no thermal contact
resistance [276] is considered in our model, the predicted thermal
conductivities are a little higher than, but still comparable with,
the experimental data when the fiber fraction is high. The
numerical relative errors due mainly to the fibers distribution
randomness are at the same level as those of experimental
measurements.

4.1.1.4. Netlike structure. Foam materials have shown good trans-
port and mechanical performances at high porosities, because of
the porous netlike microstructures. Their effective properties were
severely underestimated when the traditional theoretical models
were applied. Several new numerical approaches for regular
structures have been proposed for such materials, but with some
empirical parameters to account for the gap between the assumed
regular structures and the actual materials [20,24,25,277]. The
random generation-growth method has been used to reconstruct
the netlike random microstructures of the foam materials on a
50 � 50 � 50 grid [216], which could limit the fluctuations in the
predictions to roughly smaller than 5%.

The predicted effective thermal conductivities of reticulated
vitreous carbon (RVC) foams with water or air as the fluid media are
compared with the existing experimental data [20] in Fig. 18. The
component thermal conductivities used in the simulations are
kRVC = 8.5 W/m K, kwater = 0.615 W/m K and kair = 0.026 W/m K
[277,278]. The RVC–water predictions agree well with the experi-
mental data while the RVC–air predictions are a little lower. We
noticed that the ambient temperature was 25 8C when performing
the experimental measurements [20], therefore the underestima-
tion of the effective thermal conductivity of RVC–air foams could
result from the neglected thermal radiation. The effects of thermal

Fig. 16. Comparisons between predicted and experimental effective thermal

conductivities of unsaturated porous sands in frozen and unfrozen states. The

experimental data is from Ref. [271,273]. The parameters are e = 0.52, ks = 2.85 W/

m K, kw ¼ 0:5924 W=m K, kg = 0.0249 W/m K, and kice = 2.38 W/m K.

Fig. 17. Measured and predicted effective thermal conductivity of phase change

materials containing carbon fibers. The properties used are kf = 180 W/m K,

km = 0.47 W/m K.
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radiation may become more significant when the overall effective
thermal conductivity of the media is relatively low.

To evaluate the contribution of the radiation heat transfer, Tao
et al. [24] proposed a simple relationship to introduce the radiation
effect into the thermal conductivity, krd, for the polyurethane (PU)
foams as:

krd ¼
16sT3

3ð42:038rsVs þ 121:55Þ (40)

where s is the Stefan–Boltzmann constant (5.67 � 10�8 W/m2 K4),
T the mean temperature, rs the solid density and Vs the solid
volume fraction.

Fig. 19 shows the predictions of effective thermal conductivities
of PU foams at 286 K with and without the radiation modification,
in comparison with experimental data [24,25]. The parameters
used in the simulations are the thermal conductivity of PU solid
kPU = 0.262 W/m K, the thermal conductivity of air at 286 K and
under standard pressure kair,sp = 0.0252 W/m K, then at 286 K
and under a lower pressure (nearly 2 Pa) kair,lp = 5 � 10�7 W/m K,

and the PU solid density rs � 800 kg/m3 [278]. After the radiation
modification the predicted effective thermal conductivities agree
pretty well with the experimental data for PU foams under both
standard air pressure and the lower air pressure as seen in Fig. 6.
The results also show that the importance of radiation contribution
decreases with an increasing solid volume fraction so that the two
simulation results converge at high solid volume fraction, the
radiation contribution accounting for almost 6% when the solid
volume fraction is over 10% for 286 K at standard air pressure
condition, as illustrated in Fig. 19.

4.1.2. Electrical conductivity

For the two-phase case, we compare our predicted effective
electric conductivities of Al2O3/Y-TZP composite materials with
the measurements by Sanchez-Herencia et al. [42]. Fig. 20 shows
the results of effective electric conductivity versus volume fraction
of Al2O3 for single-layer composites. The electric conductivities of
the Al2O3 and Y-TZP components used in the simulations are
3.7 � 10�7 and 1.0 � 10�2 S/cm, respectively [42]. When we use a
logarithmic scale for the y-axis, the effective electric conductivity
exhibits a nearly bi-linear trend, with the intersecting point falling
around the point where the volume fraction of Al2O3 is 0.8. Before
the intersecting point, the effective electric conductivity decreases
with the volume fraction of Al2O3 at a low rate, whereas after the
point, the rate of decrease becomes much steeper. Such a trend is
consistent with the previous report [42]. Unlike the previous
predictions [279] however, the change of the effective conductivity
is smooth and continuous with no singular point, making more
physical sense. Our predictions agree well also with the experi-
mental data when the Al2O3 volume fraction is below 0.8, yet the
predictions are much greater than the measured values once the
Al2O3 volume fraction approaches 0.9. The reason for the
discrepancy, as pointed out in Ref. [279], might lie in the
systematic error of the experimental equipment or the lacunae
existing in the materials.

4.1.3. Dielectric permittivity

Consider a glass porous structure, either dry or saturated fully
by a liquid, i.e., a two-phase case. Sen et al. measured the dielectric
constant of such porous systems in three cases: dry, water-
saturated and Methanol-saturated [280]. We reproduce the porous
structures by QSGS [17] with cd = 0.01 fglass on 200 � 200 grids and
calculate the effective dielectric constant by LBM with the

Fig. 18. Comparisons of effective thermal conductivities in RVC foams.

Fig. 19. Comparisons of effective thermal conductivities against the solid volume

fraction in polyurethane foams. The solid symbols are experimental data, the stars

are predicted results before radiation modifications and the circles are predictions

after modifications.

Fig. 20. Effective electric conductivities variation with volume fraction of Al2O3 for

the granular Al2O3/Y-TZP composites. The experimental data is from Ref. [42].
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component dielectric properties: ewater
r ¼ 80, eMethanol

r ¼ 30,
eair

r ¼ 1, and eglass
r ¼ 6:4 [280]. Fig. 21 shows the predicted effective

dielectric constant versus the porosity for the three cases,
compared with the experimental data. The symbols represent
the experimental data [280] and the solid lines are the predicted
values. The numerical results show good agreements with the
experimental data.

When the solid porous structure is partially saturated by a
liquid, the effective dielectric constant of the multiphase system
may change greatly with the liquid content. A technique has been
developed by which the volumetric water content can be evaluated
from the measured value of effective dielectric constant of the
unsaturated soil sample [165,179,281,282]. Here we simulate such
a three-phase system using the present numerical methods. Fig. 22
compares our predicted effective dielectric constant of such
unsaturated soil with the measured data of Andisoil (Miyazaki)
[169] and those by other theoretical models reported in Refs.
[179,182]. The solid soil particles are reproduced by QSGS with

Psoil = 0.27 and cd = 0.01Psoil. The component dielectric properties
used are ewater

r ¼ 80, esoil
r ¼ 5:5, eair

r ¼ 1 [182]. Comparing with the
results by other theoretical models, the present predictions agree
most closely with the experimental data. The agreements should
be better if we know the internal geometry in more detail so as to
use closer geometrical parameters in QSGS.

4.1.4. Elastic moduli

The theoretical models are more widely used in calculations of
mechanical elastic moduli of multiphase materials. Very little
effort however has been made for a completely numerical
modeling of effective moduli, to the best of the authors’ knowl-
edge. Since the displacement field under the pure elastic
deformation can also be governed by Eq. (15) under certain
assumptions listed in Section 3.2.1, the same methodology can be
extended to the estimation of the effective elastic moduli.

First the equivalent microstructures need to be reproduced
based on the experimental information. For instance, Tilbrook et al.
[283] provided a series of microstructural images of alumina epoxy
composite samples. Pores are clearly observable in the composites,
although the porosity details are not reported. Their results show
roughly that the porosity decreases with the alumina volume
fraction fAl2O3 when fAl2O3 �50% but increase with fAl2O3

otherwise. Since it is reported in the study that the porosity was
at most 5% in the Al2O3–Epoxy composites, we propose here a bi-
linear relationship between the porosity and the volume fraction of
alumina:

e ¼
0:1 � fAl2O3 ðvAl2O3

f <50%Þ

0:1 � ð1� fAl2O3Þ ðvAl2O3

f �50%Þ

(
(90)

Fig. 23 shows six generated random microstructures of such
Al2O3–Epoxy–Pore composites using our approach on a 200 � 200
grid system, where the light phase is alumina, the grey phase is
epoxy, and the dark spots are pores. Compared with the
microstructure images of the actual composites (see Fig. 1 in
Tilbrook et al.’s paper [283]), the generated ones here capture well
the structural details and the stochastic characteristics.

Fig. 24 provides the predicted effective Young’s modulus
compared with the experimental data of Tilbrook et al. [283].
The properties of alumina and epoxy are listed in Table 3. The
elastic properties of the pores are assigned to a small value, such as
10�5 GPa. For such a large contrast in the elastic moduli between
the two solid components (EAl2O3 : Eepoxy ¼ 390 : 3:4), the HS
bounds, calculated by Eqs. (3)–(7), failed to provide tight
constraints, whereas the present method still yields accurate
predictions, without resorting to any empirical parameters. If the
porosity data were given, the prediction accuracy could be further
improved.

When the direction of the external force and the displacement
varies from normal to parallel to the top surface, the same
governing equation Eq. (15) is still roughly valid under the
assumptions listed in Section 3.2.1 to describe the small shear
displacement with varying local shear modulus of composite
materials. Fig. 25 shows the predicted effective shear modulus of
the alumina–epoxy composites versus the alumina volume

Fig. 21. Effective dielectric permittivity versus porosity for porous glass (two-phase

cases) where cd = 0.01fglass, ewater
r ¼ 80, eMethanol

r ¼ 30, eair
r ¼ 1, and eglass

r ¼ 6:4. The

symbols are the experimental data [280], and the lines the predicted results.

Fig. 22. Effective dielectric permittivity versus volumetric water content for

unsaturated soil (three-phase cases) where ewater
r ¼ 80, esoil

r ¼ 5:5, eair
r ¼ 1.

Table 3
Elastic properties of composite materials

Property Al2O3 Epoxy

E (GPa) 390 3.4

K (GPa) 260 3.8

G (GPa) 156 1.26
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fraction for the same three-phase microstructures above.
The used shear moduli of Al2O3 and epoxy are listed in Table 3.
Again with the dispersed pores/voids considered, the predicted
effective shear modulus of the Al2O3–epoxy composites are

consistent with the experimental measurements [283]. After the
Young’s moduli and the shear moduli were calculated, the
Poisson’s ratio was also calculated and compared with the
experimental data [265].

Fig. 23. Reproduced three-phase microstructures of alumina–epoxy composites with pores inside. The parameters used are c
Al2O3
d ¼ 0:1 � fAl2O3 ð1� fAl2O3 Þ and cpore

d ¼
ð1� fAl2O3 Þ � cAl2O3

d for fAl2O3 �50% or cpore
d ¼ fAl2O3 � cAl2O3

d for fAl2O3 <50%. The light phase is alumina, the grey phase is epoxy and the dark spots are pores. (a) 95% Alumina,

0.5% pore. (b) 85% Alumina, 1.5% pore. (c) 70% Alumina, 3% pore. (d) 55% Alumina, 4.5% pore. (e) 25% Alumina, 2.5% pore. (f) 10% Alumina, 1.0% pore.
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4.2. The size effects

Size or scale effect is a prevalent phenomenon in material
properties, i.e., many properties thought to be intrinsic turn out to
vary when the material dimension is altered. The most striking
example was given by Griffith [11] in his famous plot of the
experimental data of material strength against its diameter, thus
the birth of the fracture mechanics. This discovery of strength-
sample size connection was also reported in 1926 by Peirce [12]
after he examined the ‘‘weakest link’’ theorem using the testing
data on yarn strength. Such size or scale effect have led to related
studies on material mechanical [284,285] and other properties
[87,130,286,287].

Several researchers have reported that the effective thermal
conductivities of porous media may vary for different average
pore/particle sizes by their experiments even though the
components and the porosities of the media are same [286,288–
290]. For the solid–air porous system, finer solid particles often led
to a higher effective thermal conductivity at the same porosity
[286,290]. The existing theoretical models can hardly explain this

phenomenon, and few analyses have been found to explore the
mechanism.

Here we control the average pore/particle size by changing the
values of cd. Based on the definition of cd in Section 3.1.3, a greater
value of cd leads to a smaller average size of pores/particles at a
given porosity e. Fig. 26 demonstrates two generated structures at
e = 0.5, where (a) has a ten times higher cd than (b). The structure
for a higher cd looks more uniform and has a higher surface-to-
volume ratio. The rough surfaces of the generated structure appear
to be typical of natural granular porous media. These complexities
of structure may exhaust the computational resources of classical
PDE solvers, but have little effect on the computational efficiency
of the LBM calculations.

Based on the porous structures generated for different values of
cd, the particle size effect on the effective properties of porous
media has been investigated using the present method [17]. To
highlight the point without repeating the contents above, we used
a general property below to focus on the scale effect.

For the granular solid particle materials, Fig. 27 shows the
calculated effective properties versus the solid volume fraction for

Fig. 24. Comparisons of three-phase (Epoxy, Al2O3, air) predictions of effective

Young’s Modulus, as a function of alumina volume fraction, for epoxy—Al2O3

composites with experimental data [283] and various theoretical modeling results.

Fig. 25. Predicted effective shear modulus as a function of alumina volume fraction

for Al2O3–epoxy composites compared with the experimental data [283] and HS

bounds.

Fig. 26. Isotropic structures for different values of cd at a same porosity e = 0.5. The dark is gas and the white is solid. (a) cd = 0.1e and (b) cd = 0.01e.
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two different values of cd. Suppose the solid particles have a higher
value of the property at ls = 3.0 and the property of the other phase
is much lower lg = 0.025. No unit is specified here since it depends
on the physical type. The theoretical solutions for Parallel mode
and Series mode are also provided in the same figure. The results
show that this effective property of the random porous media lays
in between the values of Parallel mode and Series mode, and a
larger average particle size leads to a lower effective property over
the full range of the porosity except at 0 and 1. The largest
difference between the results of the effective property at different
values of cd occurs where the solid volume fraction is somewhere
within 0.5–0.8. Thus, we keep the solid volume fraction at 0.5 and
change the value of cd. The predicted effective properties for
different values of cd are then shown in Fig. 28, which indicates that
the effective property increases with the core distribution
probability. Since the particle average volume is inversely
proportional to the value of cd, the result means the effective
property of granular solid porous media decreases monotonically
with the particle average size.

To explain why a smaller average particle size leads to a higher
effective property of porous media, the predicted potential fields for
two different structures are shown in Fig. 29. For a homogeneous
material, as the top and bottom boundaries are both isothermal,
the potential contours should be a series of uniform and parallel
lines. However, the temperature contours in the porous materials
will be distorted by the heterogeneous phase distributions in the
materials, as shown in Fig. 29. Still we find that a larger value of cd

results in smoother potential contours which are closer to those for
homogeneous materials. Based on the uniformity principle of
potential gradient [291,292], the porous structure with a finer
particle size generated by a larger value of cd should lead to a
higher effective property.

4.3. Anisotropy effects

Although materials with directional features are common, most
previous work has focused on the isotropic cases, except some
studies attempted to bring this property-direction dependence

Fig. 27. The predicted effective property versus solid volume fraction for different

values of cd. Fig. 28. The predicted effective property versus value of cd at e = 0.5.

Fig. 29. Potential contours for different values of cd. (a) cd = 0.1e and (b) cd = 0.01e.
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into general formulation [28,49,85,186]. Still a few researchers
have generated anisotropic porous materials by using ellipse
groups with different axes lengths or orientation angles [193].
Based on the present QSGS process, an anisotropic microstructure
can be easily generated by varying values of the directional growth
probability, Di, for the granular porous media. No additional efforts
are needed to handle the inter-particle connections. Fig. 30 shows
the generated structures for different ratio values of Dx:Dy, where
Dx is along the horizontal main directions (directions 1 and 3 in
Fig. 6) and Dy is the vertical main directions (directions 2 and 4 in
Fig. 6). The growth probabilities in the four diagonal directions are
always set as a quarter of the minimum value of those in the main
directions. The other parameters are cd = 0.01 and e = 0.5, and the
grid used is 200 � 200. The generated microstructures show quite
different characteristics for different values of directional growth
probabilities. The anisotropy increases with the Dx:Dy ratio. The
directional growth probabilities are determined based on the
macrostructure statistical information, and can thus be estimated
by the measurement data from actual porous structures.

After the anisotropic microstructures are generated with the
Dx:Dy ratio varying from 0.01 to 100, we predict the effective
properties along the y-direction. Fig. 31 shows the numerical
results where e = 0.5, cd = 0.01e, ls = 3.0, and lg = 0.025. The results
indicate that the effective properties along the y-direction decrease
monotonically with the Dx:Dy ratio. For a given porosity, the
effective property is enhanced along the direction with higher
growth probability, and meanwhile weakened along the direction
with lower growth probability.

Another typical anisotropic structure is the aligned fiber
material. The two-dimensional two-phase fibrous structures have
been studied, for instance, by changing the orientation angle
bounds of fibers [214]. Generally, the effective properties of fibrous
material would be enhanced along the alignment direction and
weakened along the perpendicular direction.

4.4. Morphology effects

The morphology here refers to the internal structural features of
a material. For random microstructures, there are at least three
typical structure types: granular, fibrous, and netlike. For different
structure types, the effective properties usually differ drastically
even for the same components and fractions. Due to the
complexity of the problem, very few researches have focused on
the morphology effect on the effective properties, especially, via

theoretical approaches. Tekce et al. [293] measured the thermal
conductivity of copper reinforced polymer composites with
different filler shapes and found that the fiber shape may lead
the better conductivities than the sphere and plate shapes at the
same filler fractions. Since the random generation-growth method
can reproduce all the three different types of microstructures, the
present mesoscopic method provides a way to study such effects.

Consider two-dimensional two-phase materials with different
morphologies reproduced using the random generation-growth
method on a 200 � 200 grid for different dispersed component
volume fractions. Again a nominal property without any unit is
used here. The component property for the dispersed phase is set at
100 units and that for the continuous phase at 1 unit. The effective
properties for the three random microstructures are compared
with the theoretical bounds as well as those of a structured sphere
array in Fig. 32. The results indicate that (i) the effective properties
of the sphere array case are almost the same as the HS lower
bounds, for there are no contacts between the dispersed particles
in both cases; (ii) the granular structure leads to the lowest

Fig. 30. Microstructures of anisotropic porous media with different directional growth probabilities with cd = 0.01, e = 0.5. The dark is gas and the white is solid. (a) Dx:Dy = 1:1

and (b) Dx:Dy = 10:1.

Fig. 31. The predicted effective property of anisotropic porous media for different

directional growth probabilities.
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properties for the same dispersed phase volume fraction. Without
considering the contact resistance and connect manner, the fibrous
structure seems to be the optimal one for the highest properties.
Such results may have important significances for material or
structure designs.

4.5. Phase interaction effects

When a porous medium contains more than two phases of
state, the effect of the inter-phase interactions on the material
properties should be evaluated. For a three-phase porous system
involving gas, liquid and solid, the simplest case is to generate the
liquid phase using the QSGS tool with a uniform phase interaction
growth probability, i.e., Il;l

i : Il;s
i ¼ 1 with l representing the liquid

phase and s the solid phase. This hypothesis is based on a wetting
process characterized by a strong liquid–solid attractive potential,
and will result in a uniform liquid film attached on the solid grains
as shown in Fig. 33a. The smaller the Il;l

i : Il;s
i ratio, the more uniform

is the liquid film (see Fig. 33b). Such structures can be found in
certain multi-components composite materials [201]. However,
for the unsaturated sandstones or glass assembles, the wetting
characteristic of water is different. Both the lowest interface
energy law [211] and the measured images [205] have shown that
the water in sandstones or glass assembles tends to be in
aggregation rather than in continuous thin films on the solid
surfaces due to the weak wetting properties. Here we reproduce
the water distributions similar to those in sandstones by changing
the values of Il;l

i : Il;s
i ratio as shown in Fig. 33c and d. Fig. 33

compares the water distributions in the porous media for different
phase interaction growth probabilities. In all these cases, the solid
phase distributions are isotropic, with volume fraction e = 0.5, the
core distribution probability cd = 0.01e, and water volume fraction
0.25, but the Il;l

i : Il;s
i ratio changes from 10:1 to 1:100. A greater

Il;l
i : Il;s

i ratio represents a weaker liquid–solid inter-phase attractive
potential and a weaker wetting interface, i.e., the liquid will be
more aggregative.

The phase interaction effects on the effective property of
multiphase porous media can thus be investigated. Assuming an
unsaturated sandstone case where the solid particle volume

fraction is fs = 0.5 with cd = 0.01fs, the water volume fraction is
fl = 0.3, and the component properties are ls = 3.0, ll = 0.1, and
lg = 0.025 respectively. Fig. 34 shows the predicted effective
properties at different liquid–solid phase interaction growth
probabilities. The results indicate that the effective property of
multiphase porous media increases with the degree of liquid phase
conglomeration. The effective property changes little when
Il;l
i : Il;s

i <1, and increases remarkably when Il;l
i : Il;s

i >10.

4.6. Examination of the current measurement techniques

When using the numerical method to study the effective
properties of multiphase materials in comparison with the existing
experimental data, it was interesting to find that for the same
problem (i) the two-dimensional predictions were often different
from the three-dimensional results; and (ii) some experimental
data agreed with the two-dimensional predictions while the others
go well with the three-dimensional calculation results.

For instance, Fig. 35 compares the effective thermal conductiv-
ities of moist sands in frozen and unfrozen states measured by the
hot-probe technique [271,273] with the corresponding predictions
by both two- and three-dimensional methods. The parameters are
e = 0.52, ks = 2.85 W/m K, kw ¼ 0:594 W=m K, kg = 0.0249 W/m K,
and kice = 2.38 W/m K, all adopted from [272]. The two-dimen-
sional simulations use a 200 � 200 grid, and the three-dimensional
cases use a 60 � 60 � 60 grid for acceptable computational costs.
The results show that the experiment data are consistent with the
two-dimensional predictions, yet deviate from the three-dimen-
sional predictions. The reason may likely be that the hot-probe or
hot-wire technique, which is based on the line heat source and
axial symmetric assumption, is essentially a two-dimensional
technique.

Carson et al. [294] developed a transient comparative method
of a largely 3D technique to measure the effective thermal
conductivity of a pseudo-porous food analogue. Fig. 36 shows the
experimental data comparing with the respective two-dimen-
sional and three-dimensional predictions using the present
models. The parameters are cd = 0.01, ks = 0.60 W/m K, and
kg = 0.035 W/m K. Again the two-dimensional simulations use a

Fig. 32. The effective properties versus volume fractions of the dispersed phases for different morphologies. (a) All structures are assumed isotropic. For the spheres array,

10 � 10 spheres were used; for the granular structure, cd = 0.01fs; for the netlike structure, nnode = 4; for the fibrous structure, the fiber’s length is set 100 grid size, the width

is 1. (b) Schematics of the four structures. For fibrous and netlike structures the dark is solid (dispersed phase); for array and granular random structures the white is the solid.
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Fig. 33. Microstructures of three-phase porous media with different phase interaction growth probabilities. The gray is solid particles, the white is liquid, and the dark is gas.

The solid is isotropic with cd = 0.01e. The porosity e(P2) = 0.5, and the liquid volume fraction Pl = 0.25. (a) Il;l
i : Il;s

i ¼ 1 : 1. (b) Il;l
i : Il;s

i ¼ 1 : 10. (c) Il;l
i : Il;s

i ¼ 10 : 1. (d)

Il;l
i : Il;s

i ¼ 100 : 1.

Fig. 34. ETC of three-phase porous media for different liquid–solid phase interaction

growth probabilities. The parameters are: fs = 0.5, cd = 0.01fs, fl = 0.3, ls = 3.0,

ll = 0.1, and lg = 0.025.

Fig. 35. Comparisons between our numerical predictions with the experimental

data of Singh et al. [271] measured by the hot-probe method.
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200 � 200 grid and the three-dimensional cases use a 60 � 60 � 60
grid. The three-dimensional predictions agree with the experi-
mental data, while the two-dimensional predictions appear much
lower. Although the generated random structures are not exactly
same as those in Carson’s experiments, which might explain some
of the differences [145], this comparison may still serve as
evidence to show that Carson’s transient comparative method is a
three-dimensional measurement technique.

5. Conclusions and perspectives

5.1. Concluding remarks

It has always been one of the most important but challenging
goals to establish connections between the effective properties of
multiphase materials and their internal microstructures. Inher-
ently, two major issues are involved—the internal morphology of
the material formed by the constituents, and the interactions
among themselves. However, even for simple cases, bringing these
two factors into a theoretical treatment often poses as a challenge.
Once materials become more complex with irregular internal
morphology and formed by constituents of different phases,
prediction of the system behavior turns into a daunting task.

This review first surveys and summarizes the existing major
analytical models dealing with the effective property predictions
for heterogeneous materials. Besides the classical fundamental
models, with or without the modified or added empirical
parameters, the combined models and the network schemes of
basic models have also attracted much attention in recent years.
However, despite quick, often rough, estimation and/or small
computation costs, the theoretical models are unable to reflect the
effects of connections and interactions of the constituents on the
effective properties of multiphase material systems. The capability
of each model is largely empirical and the models cannot be used
for new material designs.

The numerical methods using computer simulations provide an
alternative in dealing with the effective properties of complex
multiphase materials. After reviewing the previous numerical
methods and summarizing the challenges due to complex
geometries and conjugate effects, we highlight the recent progress
in the mesoscopic methods that can predict more accurately and
efficiently the thermal, electric and mechanical properties of

multiphase materials with complex internal structures. Two major
parts are involved: (i) a multi-parameter random generation-
growth algorithm for reproducing multiphase microstructures
based on the macroscopic statistical information of real structures;
(ii) a high-efficiency lattice Boltzmann model for solving the
relevant governing equations with conservation and continuity
constrains automatically satisfied for a closed system. The
theoretical analysis indicates that such numerical methods are
applicable to calculate effective thermal conductivity, electrical
conductivity, dielectric permittivity and even elastic moduli for
stable and equilibrium multiphase systems.

Various applications have validated the feasibility, effective-
ness and robustness of the mesoscopic methods by comparing the
predictions with existing experimental data for different cases.
Since the microstructure reconstructions are controllable by
adjusting the statistic parameters, the mesocopic numerical
method has been used to investigate the effects of structure
geometries and phase interactions on the effective properties for
complex materials. For two-phase systems, the size effect of
particles, the anisotropy effect of microstructures and the
morphology effect are therefore studied. For multiphase systems,
different phase interactions, which influence the aggregations of
the liquid phase, are taken into account for the effective properties
of materials. By comparisons between the experimental data and
the numerical results, the existing experimental techniques are
also examined, concluding that the methods based on hot wire or
hot probe are all two-dimensional measurement technologies.

It is also shown that for given system composition and
structure, this numerical methodology is in essence a model built
on sound physics principles with prior validity, without resorting
to ad hoc empirical treatment.

5.2. Some perspectives

Facing such a huge and ever-increasing body of research work
in complex materials, one could not help but feeling overwhelmed.
So what we have done in this article only offers a glimpse of the
subjects discussed, and much remains to be said and done. In this
section we make some less restrictive comments, and offer our
often still fluidic views and even speculations on the emerging
topics down the road.

5.2.1. The local and global scale or size effects

Strictly speaking, the scaling effects discussed in this review
respond only to the fact that many material properties are
dependent on their physical size or dimensions. In other words, we
have only touched upon the influence of the material dimension,
and are falling short in reviewing the progresses in developing
theories and methodologies aimed to model the full range of the
hierarch of different characteristic scales in both space, as well as
time. The drastic changes in properties of the same materials at
bulk versus at nanoscale are the most striking manifestation of
such influence in spatial domain, whereas the specific relativity
versus the Newton’s Second Law of Motion deals with the issue in
temporal terms. In between these extremes, such scale effects still
exists, all depending on whether they are negligible for a given
problem, in comparison to other factors [102,109,295–313].

For instance, it is well documented and widely known that
material strength (especially those of brittle materials) is sensitive
to the size of the material tested: the strength increases for a
shorter and thinner sample. This kind of scale effect has been
demonstrated and modeled by many, including the work described
in Section 4.2 of this paper. For convenience, we term this as the
local scale effect in a limited length range. Furthermore, such a
scale effect is clearly not continuous, and increasing evidence has

Fig. 36. Comparisons between our numerical predictions with the experimental

data of Carson et al. [294] measured by a transient comparative method.
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people believe that the relationship breaks down over large range
of scales in that there are often different physical laws dictating the
behaviors of the same material at nano-, meso- and macro-scales, a
scale effect in global scope. As we discussed above, the rapid
developments of the microscopy technique enable us to observe
and measure more and finer microstructures to realize that they
are actually multiscale as well. For example, it has been found that
the particles in some granular materials are actually themselves
assembles of numerous fine fibers [189,190], as in the cases to
predict the effective properties of two-level granular porous media
[314].

5.2.2. Nanoscale size effects and multiscale modeling

Needless to say, the multiscale microstructure and modeling its
effects on the effective properties of the material are a very
important yet challenging topic for materials design.

It is lesser a problem when modeling a system over the range of
meso (roughly at 10�6–10�4 m) to macroscale, for nearly all the
physical laws are valid at both scales, provided that the local size
effect is included when necessary. So the main issues in this case
have to do with efficiency and accuracy in deciding the modeling
approaches: obviously, for one thing, there much more structural
details and interactions to account for at meso scale level. Even if
there are nanoscale components in a complex system, for modeling
at meso scale, we can always using the corresponding effective
properties of the nanoscale components without immersing into
the details at nanoscales.

Problems lie in the nanoscale arena. It has been reported that,
as summarized succinctly by Rajagopal et al. [315,316], that ‘‘the
surface energy of Ag nanoparticles was found to be significantly
higher than the bulk Ag [317]; the size dependence of surface
ferromagnetism of Pd fine particles was found only on (1 0 0)
facets [318]. Detection of the N statistical polarization in a small
ensemble of electron spin centers was by magnetic resonance
force spectroscopy [319]. An unexpected decrease in the
strength of various materials as sizes of microns grains become
nanometers was found [320]. A large critical current at
nanosizes of superconductors [321] was measured. There are
experiments on molecular magnets [322] and possible canted
magnetism in Gd clusters [323]. There are also discussions of
microelasticity at the nanoscale [324,325]. There are also recent
theoretical works dealing with existence of temperature on the
nanoscale [326], possible tests of the thermodynamic approach
to granular media [327], and scaling relations in equilibrium
thermostatistics with long range interactions with implications
to nanosystems [328]’’. More recent additions include the
reports on the negative conductance [329], super thermal
conductance [330], and the inter-frictionless flow [331] all
exhibited by carbon nanotubes. Most of these abrupt changes in
properties at the nanoscale are attributed to the quantum
phenomena dominant at the scales, and incorporating such
influences into a modeling scheme poses a major challenge as
new research direction.

More specifically, as stated above, there are limitations of the
conventional continuum approaches (e.g., the finite element
method) to describe the behavior of materials at scales smaller
than tens of micros [299], and such often striking differences in
behaviors of the same material at different length scale have
prompted development of individual theories for each specific
characteristic length. At the present time, a truly seamless
multiscale approach for computer simulation is still pending
[332], and an expedient way of connecting or transiting between
different scales can be carried out by the so-called ‘‘hand-shaking’’
strategy that the effective information gained from a lower scale
modeling is summed into a finite set of parameters and passed

onto a higher scale so as to cover the scale range from macro,
mesoscale to nanoscales [296,297,302,303,305,306].

5.2.3. Scale effect in temporal domain

Obviously, the behaviors of materials are also dictated by the
speed or frequency of the external excitations, another formidable
dimension adding to the complexity of the problem dealing with
the effective properties of complex materials. In general, when the
external load is non-static, the effective properties of the materials
become a function of time or load changing frequency as well—a
problem of material dynamics.

Also, because of the existence of the inertia for materials, it
takes time for a material system to reach a stable situation and/or
an equilibrium state. In many cases, the transient responses and
the non-equilibrium behaviors of the materials are of concern and
interest, and have necessitated the different methodologies in
tackling such problems, including transient behavior studies
[312,333], non-equilibrium analysis [334], material viscoelasticity,
time dependent behaviors, and system rheology [335] [336].

5.2.4. Other complexities and bi-modular behaviors

In dealing with certain complex materials know as the soft
matters [337] with multiphase composition, porous and highly
deformable structures, and often non-equilibrium state, additional
issues were illustrated by Pan et al. [338]. Examples include the
mathematics in internal structural packing geometry, the affinity
issue between macro–micro behaviors, friction, internal energy
dissipation and hysteresis, and the allometric or scaling problems
existed in such complex materials.

Another peculiar problem is the so-called bi-modular behavior.
Anisotropy is responsible for many of the challenges in studying
material behaviors. However, even at the same direction, most soft
matters behave differently depending on the sign of the force. In
other words, the entire stress–strain relationship is quite different
in tension versus in compression. At issue are two problems. First,
the current theories treating all materials as inherently identical in
both compression and tension have to be re-examined. Also, any
proposed new model needs to be evaluated to satisfy the following
criteria: (1) The tensor matrix of the effective properties must be
symmetric in any coordinate systems in order for the system
internal energy to be positive definite; (2) The individual values of
the properties are restricted in relation to one another such that
the matrix itself is positive definite [339–341].

5.2.5. Structural effects, biometrics and metamaterials

Next, we would like to further elucidate how significant the
internal structure can be for the behaviors of a material. It has long
been recognized that the molecular morphology exerts a direct
impact on the macroscopic properties of polymeric materials
[296,297]. Such structural influences become all the more obvious
for materials with more visible microstructural characteristics
such as fibrous assemblies [342], granular [162] and aggregated
materials [174,343], and fiber reinforced composites [89,157,186].
Many physical properties (e.g., the elastic constants) of these
materials can be adjusted by altering the internal structures [344–
349].

Upon realizing this close connection between structure and
properties, we start to discover various examples where nature
once again demonstrates its brilliance. By possessing a surface
with tiny scale hair, many plants and insects acquire high
hydrophobicity, or the so-called self-cleaning lotus effects [350–
352]. Other examples include the peculiar frictional and adhesive
properties as found in gecko and other excellent insect climbers
[353–355], and the structure-generated/modulated colors in the
natural world [356–359].
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A good case, created by human beings, highlighting the
importance of the materials internal structure, is the recently
emerged metamaterial (or meta material)—a material gains its
properties from its structure rather than directly from its
composition. The term was coined in 1999 by Walser [100] and
defined as ‘‘Macroscopic composites having a manmade, three-
dimensional, periodic cellular architecture designed to produce an
optimized combination, not available in nature, of two or more
responses to specific excitation.’’

The still more fascinating examples are the so-called metama-
terials [4,9,100,360,361]. The first types of such metamaterials
include the materials exhibiting negative refraction, also referred
to as the left-handed (meta) materials with startling optical
properties, non-existent in natural materials [362,363]. In order for
its structure to affect electromagnetic waves, a metamaterial must
have structural features smaller than the wavelength of the
electromagnetic radiation it interacts with. For visible light, which
has wavelengths of less than one micrometer typically (560
nanometers for sunlight), the structures are generally half or less
than half this size; i.e., less than 280 nm [100].

Another recent case in manipulating the internal structure to
achieve unique properties non-existent in nature is the so-called
nanostructured materials: nanoscale components are assembled
into desirable constructions so that the completed system behaves
differently from either its nano components or the same material
but in pure bulk form. Such nanostructured materials have
attracted wide attention for their huge potential applications
and markets [10,307,364,365].

To sum up, one can never emphasize too much the importance
of materials to the human civilization. In fact, materials used by
human beings at different time periods were often the most
credible records left for anthropologists to determine the degree of
civilization of the time [366]. So much so that the whole human
history is chronicled by the representative material used.

From early time to present, one can see a clear progressive trace
of not only the types of the materials used, but also the way they
were/or are produced. In the Stone Age, the axes and knifes made of
rocks were shaped manually by bare hands using other rocks. Then
some tools were gradually developed by which wood, earth and
bones could be crafted mechanically into useful shapes and forms
[366]. Wide use of metals represents a new era where metals can
be smelted and reformed thermodynamically into products via
phase changes [367]. The proliferation of polymeric materials is
resulted from the acquired capacity to synthesize the material
chemically at molecular level. Today, with powerful computational
capacity and much better understanding and ability in manipulat-
ing materials at many levels and scales, new generations of
materials, even non-existent in nature, with high functionalities
emerge one after another, such as composite materials, function-
ally gradient materials, metamaterials and nanoscale materials
and structures, a triumph of knowledge and creativity. Still the
golden age for newer and better materials is yet to arrive and we
see no boundary but endless potentials.
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